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The anisotropy of small-scale temperature fluctuations in shear flows is analysed
by making measurements in high-Reynolds-number atmospheric surface layers. A
spherical harmonics representation of the moments of scalar increments is proposed,
such that the isotropic part corresponds to the index j = 0 and increasing degrees
of anisotropy correspond to increasing j. The parity and angular dependence of
the odd moments of the scalar increments show that the moments cannot contain
any isotropic part (j = 0), but can be satisfactorily represented by the lowest-order
anisotropic term corresponding to j = 1. Thus, the skewnesses of scalar increments
(and derivatives) are inherently anisotropic quantities, and are not suitable indicators
of the tendency towards isotropy.

1. Introduction
Let θ be a scalar advected passively by a turbulent shear flow. The postulate of

local isotropy, or the statistical isotropy of small scales, demands that odd moments
of a spatial derivative ∂θ/∂x (say) should vanish: derivatives are small-scale quantities
and isotropy in this instance subsumes reflectional symmetry. In practice, as the tur-
bulence Reynolds number increases and conditions become increasingly favourable
for local isotropy to prevail, the derivative skewness S = 〈(∂θ/∂x)3〉/〈(∂θ/∂x)2〉3/2
should approach zero rapidly. Instead, it remains O(1) for all Reynolds numbers
for which measurements are now available; such measurements extend up to Taylor
microscale Reynolds numbers of 2 × 104 (see figure 1 reproduced from Sreenivasan
& Antonia 1997). Similarly, the skewness of the temperature increment across a scale
r, 〈(θ(x+ r)− θ(x))3〉/〈(θ(x+ r)− θ(x))2〉3/2, is expected, by local homogeneity and
isotropy, to be zero for small |r|, or to decrease rapidly with diminishing scale |r|.
Measurements show that this increment skewness remains O(1), essentially inde-
pendent of the separation scale (see figure 2). For these two reasons, it has been
appreciated for some time (see, for example, Sreenivasan 1991 and Warhaft 2000
for recent reviews) that, in the presence of a mean gradient, the passive scalar is
persistently anisotropic even at the smallest scales at very high Reynolds numbers.
This is then an indication that local isotropy, and the associated picture of univer-
sality of small scales, may need to be modified significantly if it is to survive as an
underpinning of turbulence theory.

That a residual anisotropy also exists in the turbulent velocity field is now evident
from the high-Reynolds-number measurements of Mydlarski & Warhaft (1998), Shen
& Warhaft (2000) and Kurien & Sreenivasan (2000), to cite just three references.
Recently, Arad et al. (1998, 1999a), Kurien et al. 2000, Kurien & Sreenivasan (2001),
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Figure 1. The magnitude of the skewness of the temperature derivative for a range of Reynolds
numbers, where the Taylor microscale Reynolds number Rλ = u′λ/ν, u′ is the mean-square velocity, λ
the Taylor microscale, and ν the fluid viscosity. The plot is a reproduction of figure 7 in Sreenivasan
& Antonia (1997), where the individual sources of data are stated. In the low to modest Rλ range,
the data come from laboratory experiments and direct numerical simulations, while those on the
high end come from atmospheric measurements.
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Figure 2. The skewness of the temperature increments in the atmospheric boundary layer at 9.5 cm
above the ground; the Taylor microscale Reynolds number is about 2000. The horizontal dark line
is the span of the inertial range, determined by the linear range of the third-order velocity structure
function.

Grossmann, von der Heydt & Lohse (2001) and Biferale & Vergassola (2001) have
used new techniques for characterizing the anisotropy in the velocity field and for
separating the isotropic and anisotropic parts of statistical objects such as structure
functions. The techniques use the irreducible representation of the SO(3) symmetry
group. The conclusion from these studies is essentially that, in the hierarchical rep-
resentation of the SO(3) group, the ratio of the anisotropic part to the isotropic part
diminishes with decreasing scale for structure functions of any given order – albeit
more slowly than expected from dimensional considerations (e.g. Lumley 1967). This
conclusion provides a richer perspective on local isotropy and removes, to some
degree, the problems associated with its apparent violation for the velocity field. Our
goal here is to apply the SO(3) methodology for the passive scalar field, and assess
if similar conclusions hold. For the scalar case, the SO(3) representation reduces to a
standard spherical harmonics expansion.

Section 2 discusses new measurements and is followed by a description of the
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Figure 3. Schematic of the experimental setup as seen from above. The two probes are denoted by
1 and 2. The mean wind U is oriented along the z -axis (see text). The probes are separated by a
fixed distance ∆ = 0.05 m along the y-axis and oriented orthogonal to U . The remaining coordinate
x points out of the plane. The use of Taylor’s hypothesis gives two lines of the temperature signal
indicated by the dashed lines in space, one for each probe. The correlation between signals from

the two probes may be calculated for a separation r with magnitude r =
√
∆2 + (Uτ)2.

analytical tools in § 3. Section 4 shows that the isotropic part of the spherical harmonics
representation cannot contribute to the skewness of temperature increments and
derivatives, and that at least the lowest-order anisotropy is required to describe the
observed parity and spatial dependence. The implications of these results are discussed
in § 5.

2. New measurements
The nth-order structure function of temperature is given by

T (n)(r) = 〈(θ(x+ r)− θ(x))n〉, (2.1)

where 〈·〉 denotes spatial averaging over the vector coordinate x, and r is the vectorial
scale separation. This is the object of interest here, particularly the case n = 3. In most
previous measurements, Taylor’s hypothesis has been assumed and spatial separation
has been considered only in the direction of the mean wind. That is, the spatial
separation is a scalar in the direction of the mean wind U, given by Uτ, where τ the
time increment in a single-point temperature θ. Taylor’s hypothesis does not alter the
conclusion that anisotropy exists (see e.g. Mi & Antonia 1994). However, restricting
the separation distance to one preferred direction hides the angular dependence of
the structure function, which makes it impossible to explore that aspect of anisotropy.
We can improve this situation in a simple way, as described below.

Define a coordinate system in which (for convenience) the z -axis is in the direction
of the mean wind, the x -axis is vertical and the y-axis (to be called the spanwise
direction) is orthogonal to x and z. Figure 3 provides a schematic. We measure the
temperature at two points separated by a fixed spanwise distance ∆. For both probes,
the mean wind is essentially the same. Denoting the two probes by subscripts 1 and
2, we construct the structure function

T (n)(r,Θ, Φ) = 〈(θ2(t+ τ)− θ1(t))
n〉, (2.2)

where r =
√
∆2 + (Uτ)2, Θ is the polar angle with respect to the mean-wind direction

z, given by sinΘ = ∆/r and the azimuthal angle Φ = π/2 for this particular geometry.
This configuration allows the structure function to vary with the magnitude and the
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direction of the scale separation vector r. This additional freedom, albeit constrained
by the condition r sinΘ = ∆, is achieved by the application of Taylor’s hypothesis to
temperature signals from one or both probes.

Measurements were made in the boundary layer above the salt flats of the Dugway
Proving Grounds in Utah, at a height h of 1.75 m above the ground. The ground was
smooth on the order of a millimetre. Measurements were made between 1720 hours
and 2100 hours during a summer day of the year 2000. The wind was essentially steady
in magnitude and direction over this duration. We arranged the data into four sets,
I–IV. The wind speed, determined from independent measurements using a Pitot tube
mounted nearby, was 3 m s−1 for set I and 3.5 m s−1 for sets II–IV. For set I, obtained
between 1720 and 1800 hours, the ground was on the average about 4 K warmer
than the air at the measurement height. This corresponds to unstable conditions.
A traditional indicator of atmospheric stability is the ratio h/LM , where LM is the
Monin–Obukhov length (see Monin & Yaglom 1971, section 7.2); this ratio is negative
(positive) for unstable (stable) cases, and zero for neutral conditions. The ratio h/LM
was about −0.03 for set I, small but not negligible.† For sets II and III, the ground
and measurement temperatures differed by less than 0.5 K, and h/LM was about
−0.001 and 0.003, respectively; thus, these two sets correspond essentially to neutrally
stable conditions. Set IV, obtained between 2030 and 2100 hours, corresponded to a
marginally stable state (the ground was about 1.2 K cooler, and h/LM ≈ 0.003). We
have analysed all four sets of data, though the focus here is on sets II and III.

In all boundary layer measurements where a gradient in mean temperature is
involved, the heating, no matter how small, induces buoyancy at some large scale. In
the present instances, the scales affected by buoyancy lie outside the inertial range,
and thus slight departures from neutrality have no discernible effect on the scaling
results to follow. However, the change in sign of the mean temperature gradient
between data sets II and III leads to a change of sign for the skewness of temperature
increments. We shall make an additional remark on this aspect in § 3.

Temperature fluctuations were measured by two cold wires placed 5 cm apart in
the spanwise direction. They were operated by constant-temperature anemometers
built in-house on the basis of a design by Peattie (1987). The operating current was
120 µA; this low value meant that the velocity contamination was minimal. Cold
wires were made by etching the silver coating on wires of platinum–10% rhodium
alloy made by the Wollaston process, and had a diameter of 0.6 µm and length of
the order of 1 mm. The frequency response of the wires was determined to be about
1 kHz, so the low-pass filter was set to that value, and the sampling frequency to
2 kHz. This resolution was adequate for the wind speeds observed. The signals were
digitized using a 12-bit A/D analyser.

3. The analytical tools
Some background on the SO(3) decomposition is useful. A velocity structure

function tensor of order n depending on a single separation vector r is written as

Sα1α2 ...αn(r) = 〈wα1 (r)wα2 (r) . . . wαn(r)〉, (3.1)

† The literature on free convection uses the Rayleigh number as an indication of the strength of
convection. If we use the thermal boundary layer height of ≈ 0.5 m as the relevant length scale, we
obtain a Rayleigh number of ≈ 5× 107.
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where

wα(r) = uα(x+ r)− uα(x), (3.2)

and the superscript α denotes the α-component of the velocity in Cartesian coordinates.
The rotational invariance of the Navier–Stokes equations suggests that the irreducible
representations of the SO(3) symmetry group may be used profitably to decompose a
structure function tensor into isotropic and anisotropic parts. We write

Sα1 ...αn(r) = Sα1 ...αn
j=0 (r) + Sα1 ...αn

j=1 (r) + Sα1 ...αn
j=2 (r) + · · · , (3.3)

and index the various sectors of the SO(3) representation of a given order n by
different j values, each of which is orthonormal to every other j, such that the isotropic
contribution is contained in the j = 0 sector and the higher-order j values contain
increasing degrees of anisotropy. The decomposition into isotropic and anisotropic
sectors has been implemented for the turbulent velocity field in high-Reynolds-
number atmospheric surface layers (Arad et al. 1998; Kurien et al. 2000; Kurien &
Sreenivasan 2001), and for numerical solutions of a channel flow at modest Reynolds
numbers (Arad et al. 1999a; Biferale & Vergassola 2001). The key conclusions are
that the components of the tensor corresponding to the different j sectors scale well
individually in r = |r|, and that the anisotropic sectors decay faster with decreasing
r than the isotropic parts, at least up to order 6 of the statistics measured in the
atmospheric boundary layer. This means that the isotropic sector makes up the leading
term as r → 0. Since the advection–diffusion equation governing a passive scalar is
also rotationally invariant, the SO(3) methodology appears to be equally useful for
scalar turbulence.

Let us consider the third-order structure function (i.e. n = 3 in (2.1)). Homogeneity
in the r̂-direction implies that the structure function has odd parity in r – that is, it
changes sign when r changes sign – as seen below:

T (3)(−r) = 〈(θ(x− r)− θ(x))3〉
= 〈(θ(x)− θ(x+ r))3〉
= −〈(θ(x+ r)− θ(x))3〉
= −T (3)(r). (3.4)

As already noted, the SO(3) group representation of the structure function for the
scalar simplifies to a spherical harmonics representation. We may therefore write

T (3)(r) ≡ T (3)(r,Θ, Φ) =
∑
j,m

aj,m(r)Ỹj,m(r̂), (3.5)

where j = 0 . . .∞, and for each j, m = −j . . . j, r = |r|, and Θ and Φ are the polar
and azimuthal angles, respectively. The Ỹj,m(r̂) are formed from the original spherical
harmonics Yj,m(r̂) = Yj,m(Θ,Φ) so as to have a real basis (see Kurien et al. 2000). The

lowest-order basis element Ỹ0,0(r̂), being a constant, cannot possess the odd-parity
required by (3.4). Thus the expansion begins with the j = 1 term and is written as

T
(3)
j=1(r) = (a1,0 cosΘ + a1,1 sinΘ cosΦ+ a1,−1 sinΘ sinΦ)rζ

(1)
3 , (3.6)

where the r-dependence has been assumed to obey a scaling law that depends on
j (as implied by the superscript of the scaling exponent ζ). As for the velocity field
(see Arad, L’vov & Procaccia 1999b for theoretical reasons), the scaling exponent
for a j -sector is not allowed any dependence on m. From the property of spherical
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harmonics that

Yj,m(−r̂) = Yj,m(π −Θ, π + Φ) = (−1)jYj,m(Θ,Φ) = (−1)jYj,m(r̂), (3.7)

it is clear that the j = 1 term has the desired odd-parity. For the two-point measure-
ments of the structure function given by (2.2), Φ = π/2, leaving us with just the two
terms written below:

T
(3)
j=1(r,Θ, Φ = π/2) = (a1,0 cosΘ + a1,−1 sinΘ)rζ

(1)
3 . (3.8)

For Θ = π/2, which corresponds to the separation ∆, we have

T
(3)
j=1(∆,Θ = π/2, Φ = π/2) = a1,−1 ∆

ζ
(1)
3 , (3.9)

showing that the flow-dependent constant a1,−1 is given by the non-zero value of
the structure function computed at the probe separation distance ∆. A finite contri-
bution to the spanwise structure function is thus not precluded by the lowest-order
anisotropy. For Θ = 0 which corresponds to the single probe measurement, equation
(3.8) becomes

T
(3)
j=1(r,Θ = 0, Φ = π/2) = a1,0r

ζ
(1)
3 . (3.10)

We see explicitly the change in sign as Θ changes to π in equation (3.8):

T
(3)
j=1(r,Θ = π, Φ = π/2) = −a1,0r

ζ
(1)
3 . (3.11)

4. Experimental results
We first computed the cross-correlation between signals from the two probes,

R(τ) = 〈θ1(t)θ2(t+ τ)〉, (4.1)

and used this as a check on the orientation of the probe separation with respect to
mean wind. The peak of the correlation is expected to occur at τ = 0 by homogeneity
in the (y, z)-plane. This was so for sets II and IV but the peak was found to be
shifted by 5 and 6 sampling units of time for data sets I and III, respectively. A
slight misalignment of the probe axis to the mean wind is thus suggested; this effect
can be corrected by shifting the signal of one probe with respect to the other by the
sampling units equal to the displacement of the peak correlation. This adjustment
effectively reorients the probe separation to be orthogonal to the mean wind by
setting the shortest spatial separation of the signals to be 4.85 cm and 4.89 cm for
data sets I and III, respectively. The time lag τ is henceforth referred to these shifted
data.

The temperature signal from each probe was normalized by its r.m.s. value θ′ and
the structure function computed using this non-dimensional temperature. The two-
point structure function computed according to (2.2), where θi → θi/θ

′
i henceforth,

shows the angular variation of the third-order structure function (figure 4). Panels
(a) and (b) correspond to data sets II and III, respectively. We display the angular
dependence instead of the r-dependence in order to show the unique values attained
by the structure function for each Θ between 0 and π radians. Of course, r and Θ
are related in our measurements by r sinΘ = ∆, giving the same value of r for Θ
and π−Θ. The structure function appears to assume equal values of opposite sign as
Θ → 0 (corresponding to τ → ∞) and Θ → π (corresponding to τ → −∞), showing
that the cosΘ term in (3.8) with a non-zero value of the coefficient a1,0 will be
needed. It is also the case that the structure function assumes a small non-zero value
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Figure 4. The angular dependence of T (3) for the data sets II (a) and III (b), showing the trend
defined in equation (2.2); × indicates 0 < Θ < π/2 (corresponding to τ > 0) and ◦ indicate
π/2 < Θ < π (corresponding to τ < 0). The insets show that the values of the function at π/2 are
non-zero, positive for data set II and negative for data set III (due to small changes in the stability
of the atmosphere). The equivalent range of r covered in these figures varies between 0.05 m and
90 m.
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Figure 5. Log-log plots of T (3)(r,Θ) computed from data set II and the fits to the j = 1 term given
by (3.8): (a) T (3)(r, 0 < Θ < π/2) (×); (b) −T (3)(r, π/2 < Θ < π) (◦), since the structure function
assumes negative values in this range of angles (see figure 4a). The solid lines are the least-square
fits within the inertial range. The range of theta used in the fits (corresponding to the smallest r to
largest r) are from π/2 to 0.08π for (a), and from π/2 to 0.92π on (b).

at Θ = π/2 (see insets of figure 4). This non-zero value corresponding to τ = 0 and
r = ∆ indicates that the contribution of the sinΘ term in equation (3.8) is necessary,
and that its coefficient a1,−1 is finite.

The overall change of sign of the structure function between data sets II and III
is related to the change in sign of the mean temperature gradient (the ground was
slightly hotter than the flow for set II and the reverse was true for III, see § 2). Aside
from this sign change, which is consistent with the formula given in Sreenivasan &
Tavoularis (1980), all other features are the same for the two sets of data.

To determine the three free parameters a1,0, a1,−1 and ζ
(1)
3 in (3.8), we performed

least-squares fits of the equation to T (3)(r) computed for the two data sets. The fits
to data sets II and III are presented in figures 5 and 6 respectively. Panel (a) shows
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0 < Θ < π/2 π/2 < Θ < π

a1,0 a1,−1 ζ
(1)
3 a1,0 a1,−1 ζ

(1)
3

I 0.44 0.23 1.00 0.30 0.25 1.00
II 0.30 0.19 1.00 0.28 0.20 1.00
III −0.17 −0.07 1.00 −0.15 −0.08 1.03
IV −0.24 −0.01 1.01 −0.20 −0.01 0.98

Table 1. Best-fit values of free parameters in (3.8) for data sets I–IV. Changes in stability
conditions have no effect on the exponent but change particularly the coefficient a1,−1.
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Figure 6. Log-log plots of T (3)(r,Θ) computed from data set III and the fits to the j = 1 term
given by (3.8): (a) −T (3)(r, 0 < Θ < π/2), since the structure function assumes negative values in
this range of angles (see figure 4a); (b) T (3)(r, π/2 < Θ < π) (◦). The solid lines are the least-square
fits within the inertial range. The range of theta used in the fits (corresponding to the smallest r to
largest r) are from π/2 to 0.11π for (a), and from π/2 to 0.89π on (b).

the data and the fit for 0 < Θ < π/2 (corresponding to τ > 0) and panel (b) the data
and the fit for π/2 < Θ < π (corresponding to τ < 0). The variable plotted on the
abscissae is now the separation distance r; for each r there is an associated value of
Θ given by r sinΘ = ∆. The fits were made within the inertial range determined by
the linearity of the third-order velocity structure function. The best-fit values of the
free parameters, given in table 1 for all sets of data, show some modest differences
between the cases 0 < Θ < π/2 and π/2 < Θ < π, though the scaling exponent
is quite robust.† On the whole, we conclude that the terms corresponding to j = 1
describe the third-order structure function rather well.

The skewness of the scalar increment is known to be zero if there are no mean
gradients in temperature and velocity (see, for example the measurements in heated
grid turbulence of Sreenivasan et al. 1980). Hence, a comment on the finite value
of a1,−1, albeit small compared to a1,0, is appropriate. It might be thought that the
non-zero value of a1,−1 is an indication of persistent spanwise inhomogeneities in the

† The exponent for the third-order structure function, as determined here, is unity within
experimental uncertainty. On the other hand, measurements such as those of Meneveau et al.
(1990) and Moisy et al. (2001) show that the exponent for the third moment of the absolute value
of temperature differences is about 0.85. The difference between the properties of temperature
differences with and without the absolute value is fundamental in ways that will be discussed
elsewhere.
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flow on inertial-range scales, but it is not hard to show that the presence of shear and
mean temperature gradient in one direction can, in fact, set up finite odd moment
in a different direction. It appears that (3.7) is general enough to include the case of
spanwise shear as well.

The higher-order anisotropy contributions to the third-order structure function
coming from j = 3, 5, . . . may become more important at larger scales, as seen
from the ‘peel-off’ from the fit at large r in figures 5 and 6. However, these terms
provide too many additional free parameters (> 8 including exponents) in the fitting
procedure, and we have therefore considered it prudent to restrict attention to the
leading order.

5. Concluding remarks
Our objective is to understand better the observation that the skewnesses of

temperature increments and derivatives show no tendency to isotropy in turbulent
flows that possess gradients in mean velocity and temperature. For this purpose,
we have explored the SO(3) methodology, the right orthogonal basis here being the
spherical harmonics. The main conclusion is that the third-order structure function
of temperature is manifestly anisotropic because of odd parity, and isotropy is not its
leading behaviour. Only terms with odd j can be present in the spherical harmonics
expansion and the lowest order of these, namely j = 1, provides adequate fit to
experimental data. Thus the skewness can be discussed in terms of the properties of
this term.

The present results do not differ from existing empirical wisdom that small scales
of a passive scalar retain the memory of large-scale anisotropy. However, they provide
a partial answer to the following question: should the persistent skewness be equated
with no tendency to isotropy of small-scale scalars? The odd-parity of the skewness
does not, by construction, allow it to be the suitable measure for addressing this
question. This is similar in spirit to the case presented in Kurien & Sreenivasan (2000)
in the context of the anisotropy in high-order velocity structure functions. In that
work, the high-order tensor components were chosen so that they were identically
zero in the isotropic sector thus directly characterizing the existence of anisotropy in
small scales; the fact that anisotropy existed did not automatically imply that there
was no approach to isotropy of small-scale turbulence. Such a tendency could be
observed by considering the ratios of the isotropic sector to the anisotropic sectors
for certain other tensor components of a structure function. Following this line of
thought, for the scalars, one has to look for indicators other than the skewness of the
scalar derivative or of the increment. For example, structure functions of even order,
which are even in parity and so contain a rotationally invariant part, could serve
such a purpose; so could the ratios of the isotropic terms to anisotropic terms of
even-order objects, as in Celani et al. (2000) and in Kurien & Sreenivasan (2001) and
Biferale & Vergassola (2001). Alternatively, it is conceivable to phrase the question
in terms of the relative magnitudes of the j = 1 sector of the third-order structure
function and the j = 0 sector of the second-order one.

The measurements were made as part of a collaborative effort with the groups of Joe
Klewicki and Chris Biltoft. We are grateful to them and their groups for invaluable
technical support. We thank Jonathan Burt for his help with measurements and
Jörg Schumacher and Detlef Lohse for their comments on the draft. The work was
supported by ONR grant 2004093.
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